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Numerical Techniques for Finding 
v-Zeros of Hankel Functions 

By James Alan Cochran and Judith N. Hoffspiegel 

Abstract. This paper is concerned with numerical procedures for the evaluation of the zeros, 
with respect to order, of Hankel functions and their derivatives in cases when the arguments 
of these functions are held fixed. Using Olver's asymptotic expansions, two auxiliary tables 
have been computed, one appropriate for real and the other for purely imaginary argument. 
These tables, included herein, permit the calculation of rather accurate approximations to 
the desired v-zeros for wide ranges of argument and index. Moreover, from the given tabular 
entries, the errors attendant with any approximate v-zero so determined can be easily esti- 
mated. 

1. Introduction. In numerous scattering and diffraction problems where circular 
or spherical boundaries are present, the zeros of Bessel functions (or combinations 
thereof) are of interest. Previously we have studied, from a theoretical point-of-view 
[1], the roots of 

(1.1) ~~~~~~~~H(')(w) = O 

(1.2) (d/dw)H(1)(w) = 0, 

(1.3) (d/dw)H(1)(w) + iWH(t)(w) = 0 (W = constant), 

where these Hankel functions and their derivatives are to be considered as functions 
of their order v with fixed argument w. We now focus attention on procedures which 
can be used to obtain numerical values for the v-zeros of these functions. Particular 
consideration is given to (1. 1) and (1.2) for the situation wherein the argument w is 
either positive real or purely imaginary. In the latter case it is well known that the 
v-zeros of H(')(w) and (d/dw)H(t)(w) are themselves purely imaginary also [6], [7]. 

Our point-of-departure is the uniform asymptotic expansion of Olver [2], [3] for 
the Hankel function of the first kind.* After reversion, it turns out that auxiliary 
tabular values may be computed, which allow rather accurate approximation of 
v-zeros for wide ranges of argument and index. Second differences are included in 
the tables for purposes of interpolation, and certain limiting cases which extend the 
domain of applicability are also considered. In a sense, then, the work reported herein 
complements that already appearing in [1]. 

In the absence of **exact" values with which to verify the accuracy of roots of (1.1) 
and (1.2) computed using our procedures, the attendant error can only be estimated. 
We have done this in two ways: by calculation of a first-order correction term based 
upon Olver's representation and by comparison with results obtained using a four- 
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term Debye approximation to the Hankel functions [4], [5]. In the latter case we show 
how any inaccuracies in the Debye expression itself might be roughly ascertained. 

2. Preliminaries. It should be recalled that the roots of equations (1.1), (1.2), and 
(1.3) are symmetric about the origin, since e(1/2)v'iH"l)(w) and e lI2)vxi(d/dw)H(l)(w) 
are even functions of v. We need only to concern ourselves, therefore, with v-zeros 
lying, say, in the upper half-plane. If we enumerate these with the integer index s, in 
order of increasing magnitude, then as s - coc, 

jW7 ig w)+l(is/~I 1 0lnIn (2.1) Vs= I+ 0 
ln s)] (2.1) v5 ~~i(j-n -arg wv) + In(3ins/ejwj) [l+? fn s ) 

for the roots of both (1.1) and (1.2) [1]. For positive (negative) w these v-zeros are all 
located in the first (second) quadrants of the v-plane, and for large s are such that 
arg v, - 2ir. If arg w -si, then Polya [6], [7] has shown that arg v, = {ir exactly 
for all s.** 

The appropriate uniform representation for the Hankel function of the first kind 
due to Olver takes the form ([2, p. 338], [3]): 

H )( ) 2 -1/3)ni 44 81/4 JAi(V2/3 e'2/3)7ri; ??0 A A v Z( eV1/3 E 2r 

(2.2) 
= 

+e(2/3)7rAi i(V2/3e(2/3)7r10 0 BA()} 
V' r =0 

as |v| --+ o, 0 < arg v < a, jarg zf < r.*** Here the original argument w of H") 
has temporarily been replaced by vz and 

Br(g) = I 1/2 t- 112 {f(t)Ar(t) - AX(t)} dt, 

(2.3) 

= 1, Ar+IQG) = -B;(4) + f (C)Br(4)d; 

with 

Ar+ i(-o) 0= for r > 0O 
(2.4) 

5 Cz2(z2 + 4) 
= 16 4(1 _- 

and 

(2.5) 2 43X2 
(1 - t 2)1/2 1 [ + (1 - 2( 

- 

9)1/2. 

Ai is the well-known Airy function of the first kind (see [3, pp. 446 fl], for instance) 

**These results can also be easily established using methods such as those employed in [8]. 
***The range larg vi < j7r which Olver gives in [2] is unnecessarily restrictive; his results actually are 

valid in the larger region - < arg v < (3/2)n which includes the upper half of the v-plane as designated 
herein. 
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and is an entire function of its argument. The coefficients Ar(4), Br(4) given by (2.3), 
f(4) from (2.4), and z(C) defined by (2.5), however, are only regular analytic functions 
in a 4-plane cut, say, along the rays arg 4 = +3r from C = (37r/2)213e?(l3)iri to 
infinity. 

TABLE 1 
(1Z), A, and A' as Functions of A1/3 for (C312/Z) A 

X 
/3 1/Z 82 A A' 

0.00 1.0000 0.0636 -0.0143 - 

0.20 1.0318 0.0640 -0.0140 -3.11 

0.40 1.1275 0.0651 -0.0132 -0.750 

0.60 1.2884 0.0670 -0.0120 -0.315 

0.80 1.5162 0.0694 -0.0106 -0.165 

1.00 1.8134 0.0722 -0.00923 -0.0971 

1.20 2.1829 0.0754 -0.00789 -0.0617 

1.40 2.6277 0.0788 -0.00669 -0.0414 

1.60 3.1 14 0.0824 -0.00565 -0.0290 

1.80 3.7574 0.0860 -0.00477 -0.0210 

2.00 4.4495 0.0897 -0.00403 -0.0156 

2.00 4.4495 0.5608 -0.00403 -0.0156 

2.50 6.5803 0.6189 -0.00268 -0.00820 

3.00 9.3300 0.6766 -0.00184 -0.00479 

3.50 12.756 0.733 -0.00130 -0.0 0303 

4.00 16.916 0.789 -0.000952 -0.00203 

4.50 21.864 0.843 -0.000713 -0.00143 

5.00 27.655 0.896 -0.000546 -0.00104 

5.50 34.342 0.948 -0.000427 -0.000780 

6.00 41.977 0.999 -0.000340 -0.000600 

3. The v-Zeros of H(1)(w)for Fixed w. The expansion (2.2) shows that the v-zeros 
of Ht (vz) are given asymptotically by the v-solutions of 

Ai(V2/3 e(2/3),xIC = , a = 0; 

in other words, as lvi -+ oo we have 
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(3.1) V2/3e(2/3)i a 

where the as, s = 1, 2, ... are the (negative real) zeros of the Airy function Ai. If we 
restore the original argument w = vz of the Hankel function, it follows from (3.1) 
that the v-zeros of H(')(w) for fixed w should satisfy 

(3.2) V/Z(0) = vs e - 1i(as/ )3!2. 

It is by means of this expression that S and z, which are originally related by (2.5), 
are now given as implicit functions of w and s. 

The relation (3.2) can be rewritten as 

(3.3) \ 3/2(Z)/Z~ i(a)3/2/W, 

which for real or purely imaginary w has a right-hand side which is either purely 
imaginary or real. This suggests that for such arguments w, single-entry tables could 
be constructed, using (2.5), which would allow easy calculation of approximate 
v-zeros. In fact, for given x, the equations 

~3/2(Z) ={, 

(3.4) - A 

may be numerically inverted to yield z (or 1/z for convenience). This we have done 
and the results are tabulated in Tables I and 2, to 5 significant figures, where, for 
simplicity in presentation of the data, AX3 has been chosen as the independent param- 
eter. Second central differences are given for use in interpolating intermediate values, 
say by Everett's formula [3, p. 880]: 

(3.5) f(xo + ph) = qf 0 - -- 
q2 ? P(l' P 2) 1 +? 3! 0 p 3! 

with 

O _ p , 1 q = I - p. 

The tabular step h (0.20 for 0 < X1'3 ? 2.00 and 0.50 for 2.00 < A1{3 ? 6.00) is a 
compromise choice which permits interpolation accurate to within two units in the 
last decimal place, while at the same time keeping the size of the tables within modest 
bounds. The tables have been terminated at the point where (l/z) can be determined 
from the somewhat simpler approximate relations 

(3.6) 3( 1I[ni] {iA 

(cf. Eqs. (5.2), (5.4) of [1]) with roughly five significant figure accuracy.t Figure 1 
graphically displays the real and imaginary parts of (1lz) from Table 2. (Compare 
Figure 1 of r91.) 

tExplicit approximate relations for (1/z) as a function of ) much more elementary than Eq. (3.6) gen- 
erally are considerably less accurate. For instance, the expression z z 3/21 ln[4A/(3e ln(2A/e))] (cf. Eqs. 
(5.3), (5.5) of [1]) still is in error by about 2% when A is 106. 
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FIGURE 1. Real and Imaginary Parts of (1/z)from Table 2 for Case of (4312/z) -i; 
v-Zeros Given by w/z. 

4. The v -Zeros of(d/dw)H(t'(w). Before proceeding to some typical calculations it 
is worth noting that analysis compatible with the above can be carried out for the 
derivatives of the Hankel function with respect to argument. The asymptotic ex- 
pansion (2.2) can be differentiated term by term, with the result that the v-zeros of 
(d/dw)Ht( )(w) appear asymptotically as the v-solutions of 

Ai'(v 2/3e2/3)ni= 0. 

The analogue of (3.2) is then 

(4.1) w/z(4) = v'- e`i(aV/4)312 

(as Iv'I -- o). With the exception that the (negative real) turning-points a' of the 
Airy function Ai have here replaced the zeros as, the relation (4.1) is identical with 
that obtained earlier. Making the appropriate correlation, therefore, Tables 1 and 2 
should also permit easy calculation of approximate v'-zeros for either real or purely 
imaginary argument W.tt 

ttFor the smaller v-zeros particularly, however, the values thus obtained may be a good deal less 
accurate than the corresponding zeros of H"1)(w). This characteristic phenomenon was observed earlier 
by Olver [2, p. 345], with regards to ordinary Bessel function zeros. Also see Section 6. 
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5. Sample Calculations. Let us assume that we are interested in, say, the 5th zero 
of (d/dw)H( l)(w) for various values of w. To carry out the calculation of our approxi- 
mation we need knowledge of (- a)1/2. This we find from the supplementary Table 3 
of values of (-a,)"2 and (-a')112, s = 1(1)50, to be 

(-a)1/2 -_ 2.7152. 

With w = i, for instance, we thus obtain "1/3 - 2.7152, and hence interpolating 
from Table 1, 

(1/z) _ (0.5696X6.5803) - (0.0641)(0.6189) + (0.4304)(9.3300) - (0.0584)(0.6766) 

- 7.6846. 

Since v = w/z, we finally have 

Vf 7.6846i 

which compares very favorably with the more accurate value of 7.6908i. 
For the 10th zero of H(1)(5) the calculation would proceed as follows: 

(-a1l )1/2 3.5817 (from Table 3) 

i1/3 2.0946 (using Eqs. (3.3) and (3.4)) 

- 2.6213 + 3.3378i (interpolating using Table 2 and Eq. (3.5)) 
z 

vlo = w/z 13.107 + 16.689i. 

Employing a four-term Debye approximation to the Hankel function [4], [5] we 
would find v 13.106 + 16.690i. 

6. Improved Approximations. Within the limits imposed by the accuracy of (2.2) 
itself, progressively better approximations to the desired v-zeros can be obtained by 
incorporating higher-order terms of Olver's asymptotic expansion into our analysis. 
For instance, if we replace (3.1) by the more accurate relation 

e(2/3)ni 
Ai(v2/3e(2/3)-i ) + Ai'(V2/3e (2/3)ni0 4 Bo() = 0, 

v undergoes a perturbation (to first order) in the amount 

(6.1) Av = A/w 

where 

(6.2) A = -12BO()z/ln [--+ ( 

In these equations 

= 
-2-7 

' 212 
4C- C1- 

(1 Z2)311 -~ 

as determined from (2.3), and z, C are related as in (2.5), (3.3). As an illustration, then, 
we can calculate the correction, given by (6.1), for the second example of the preceding 
section. We find 
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A -0.003 + 0.004i, 

and hence 

Av -0.001 + 0.00li. 

In completely analogous fashion, the v-zeros of the derivative of the Hankel func- 
tion can be improved. For this case we obtain (again to first order) 

Av' = A'/w 

with 

(6.3.) A' -z k1t2B (4) + 4 2(1 Z 
2)3/2-]/ 

+ (1 -Z)1/21 

(6.4) - z(17 + 13z2) 1 

1 50(1 -7z '- 

For the first example in Section 5, we calculate 

Av' = -iA' _ 0.0067ii 

and thus 

v' + Av' 7.6913i. 

The expressions (6.2) and (6.3) are functions of z and C; in view of (2.5), however, 
they can be tabulated in terms of z alone. For completeness we have included such 
values in Tables 1 and 2. The approximate relation (6.4) will suffice to determine A' 
in the neighborhood of the singularity at i- 0. The following expressions, moreover, 
which are in keeping with (3.6), will yield at least three significant figures for large A: 

A -z 11 -6 ln(2/z) 

72 ln(2/z) L 1- ln(2/z) 

z Il + 6 ln(2/z) 
A' = 72 ln(2/z) V I - ln(2/z) 

7. The Overall Error. In a considerable number of numerical examples the v-zeros 
obtained by the methods outlined in this paper have been compared with values com- 
puted using a Newton-Raphson procedure applied to a four-term Debye approxima- 
tion to the Hankel function [4], [5]. Although we assume that these latter values are 
usually more accurate than even our improved approximations, they themselves do 
contain some inaccuracy, however. In the absence of a thorough error analysis, any 
such inaccuracy might be roughly ascertained as follows: Let 

H(t'(w) = Z-w) + 6 

where ZV is the value of the Hankel function computed from the Debye approximation 
and e the associated error. Under the assumption that E is only a slowly varying func- 
tion of v, the identity 

HM 1 (w) + H1) I (w) = -Ht1 )(w) V+ V_ ~ w 
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permits the approximate calculation of e as 

__ _ _ 2v1 
(7.1) - Z[v+1(w) + ZV_1(w) - Zv(w)I 2v-w)L W J 

It then follows, using a two-term Taylor series, that 

(7.2) 
- Z() (7.2) v vO ~~~ [ZV(w) + ?] / a~ V 

where vo is the desired zero of the Hankel function and v is the value computed using 
the Debye approximation. 

For the v-zeros of the Hankel function derivatives a similar analysis leads to 

V~~~~~~~~~~~~~~~~~ 
I vZY~ ) Zv -w) VW - Z)V+I(w) + IW -jZ(] w V( ) - 

LW W j v aVW 
(7.3) 

t 2[Zv (W) - ZV+ I(w)] K ZV(w) + WV Z ) ] 

In the cases investigated it appeared that five digit accuracy generally prevailed 
for all but the smallest zero or two. 
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